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Classically, there have been two different ways to obtain mean-field theories for liquid crystals. One is based
on short-range repulsive steric forces and the other on long-range attractive dispersion forces. In the former
approach, it is the anisotropic shape of the molecules that leads to the anisotropic interaction, and in the latter
it is the anisotropy of the molecular polarizability. In real molecules both causes of anisotropy can be expected
to contribute to the effective interaction, and so it is desirable to assess the combined effect of anisotropic
long-range attraction and short-range repulsion. Here we present an avenue to this end. We start from disper-
sion forces interactions and combine them with hard-core repulsions in a formal theory, whose crucial element
is the steric tensor, a fourth-rank tensor depending on the anisotropy of the interacting molecules. This tensor
can be determined analytically for a special class of molecular shapes.
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I. INTRODUCTION

Molecular interactions are thought to determine the ability
of ordered phases to emerge in certain anisotropic fluids.
Perhaps the most telling illustration of this paradigm is the
isotropic-to-nematic transition in liquid crystals.

A picture often drawn describes liquid crystal molecules
as rods or ribbons subject to interactions that tend to make
them align alike. Whenever such a tendency prevails over
disorganizing causes, an ordered phase is established from
the isotropic, disordered phase. This ordering phase transi-
tion, which is usually first order, induces a local common
molecular orientation.

A satisfactory microscopic theory for liquid crystals must
be based on the interactions exchanged by the constituting
molecules. Different special models for molecular interac-
tions have been proposed in the last decades. This is not the
most appropriate place to review all these models and the
still unceasing debate around them; for a broader account,
the interested reader is referred, for example, to the review
article in �1�.

In a mean-field approach, a single molecule is envisaged
as immersed in a field produced by the averaged action of all
other molecules that surround it. The key ingredient to a
mean-field theory is the pair potential—that is, the interac-
tion energy of two molecules. For molecules described as
rigid particles, the pair potential in general depends on the
vector joining the centers of mass of the interacting mol-
ecules and on the relative molecular orientation. For flexible
molecules, the pair potential is a more complicated function
that also depends on the molecular conformations. Our de-
velopment is confined to molecules treated as rigid. For
them, the mean-field theory predicts in general force and
torque distributions.

The existing pair potential models for liquid crystals can
be divided into three broad categories: short range and repul-
sive, long range and attractive, and van der Waals type. Cor-
respondingly, these models attribute the collective aligning

attitude of molecules to three different mechanisms: to the
mutual hindrance of molecules that reflects the anisotropy of
their shape, to the dispersion interaction that reflects the an-
isotropy induced by their oscillating charges �2,3�, and to the
coexistence of the former effects in a pair potential that com-
bines both short- and long-range forces.

The Onsager hard-core interaction for long rodlike mol-
ecules �4� is the most noticeable example in the first cat-
egory. It is an athermal model, where the ordering transition
is driven by increasing density, instead of decreasing tem-
perature. In a way, this model properly describes lyotropic
liquid crystals, as the pair potential mimics the pure steric
repulsion of molecules. Nonetheless, it can legitimately be
presented on the same footing as the models in the other two
categories introduced above, as a limiting case of extremely
short-range interactions. Though conceptually appealing, the
Onsager model fails to represent the isotropic-to-nematic
transition faithfully.

Far more successful in this regard is the Maier-Saupe
model �5�, the simplest and most celebrated example of long-
range dispersion models. Crucial to the justification of the
mean-field theory associated with this model potential is the
assumption that the molecules are isotropically distributed
around every probe molecule. As remarked in �6�, a rela-
tively small deviation from spherical symmetry already
causes the ordering phase transition to disappear.

Such a state of affairs is generally ascribed to the com-
plete neglect of short-range interactions in the purely disper-
sive Maier-Saupe theory. A remedy to this was provided by
the theory of Gelbart and Baron �7,8�, where an anisotropic,
short-range, repulsive interaction is incorporated in the
model alongside a long-range, attractive interaction, which
need not be anisotropic. This theory is often referred to as the
generalized van der Waals theory; it is computationally de-
manding and has been explicitly worked out only for special
repulsive potentials. It has, however, clearly shown that the
anisotropy in the mean-field potential is mostly due to the
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interplay between the repulsive potential and the isotropic
part of the attractive potential �9–11�.

Many other models and generalized theories have been
proposed. We refer the interested reader to specialized re-
views �1,12,13�, which also illustrate the intellectual wealth
stimulated by the desire to understand the nematic ordering
transition.

Often a unifying view is gained by a wise blend of sym-
metry and averaging. If every molecule is isotropically sur-
rounded by all others, by averaging the interaction energy of
a given molecule upon all others with one and the same
orientation relative to the selected molecule, one can define
an effective pair potential, which for rigid molecules depends
only on their relative orientation. Formalizing rigorously this
averaging is indeed less trivial than it may appear: the major
difficulty resides in handling the divergence of the pair po-
tential when the distance between the interacting molecules
approaches zero. Such a divergence embodies the ultimate,
short-range repulsion between molecules: even in the sim-
plest realization of this repulsion—that is, in the hard-core
interaction—the average over the intermolecular distance
contributes per se to the dependence of the effective pair
potential on the relative molecular orientation. This is pre-
cisely the avenue taken in this paper. We combine the long-
range induced dipole-dipole interactions with a short-range,
hard-core interaction, and we compute the effective pair po-
tential, whose anisotropy stems now from both long- and
short-range components of the pair potential.

An alternative approach was proposed by Luckhurst and
Zannoni �14�. They reconciled the antagonism between
short-range, repulsive interactions and long-range, attractive
interactions by assuming that the former are responsible for
the local organization of molecules in clusters, which in turn
are subject to the latter. This syncretic view holds that the
molecular clusters bound by short-range interactions are not
destroyed at the transition where their long-range organiza-
tion changes and thus survive in both the isotropic and nem-
atic phases. According to this view, not molecules, but stable
clusters would be subject to the effective pair potential. In
either interpretation, our formal development remains unaf-
fected.

The paper is organized as follows. In Sec. II, we write in
a compact form the dispersion forces interaction. In Sec. III,
we describe the excluded region ��, the region in space that
a molecule cannot access in the presence of another mol-
ecule. A steric tensor is defined in terms of ��, which em-
bodies the anisotropy of the steric interactions. Section IV
shows how to construct the excluded region from the mo-
lecular shape. For a special class of shapes, this construction
is carried out explicitly and the steric tensor is computed
analytically in Sec. V. In Sec. VI, the steric effect is deter-
mined for two classical dispersive interactions, for uniaxial
and biaxial molecules, respectively. Finally, in Sec. VII we
summarize our main conclusions. The paper is closed by
three appendixes with the mathematical details of our devel-
opment.

II. DISPERSION FORCES

Deriving the dispersion energy for the long-range induced
dipole-dipole interaction of two molecules from the

quantum-mechanical perturbation theory requires resorting
to a number of approximations if one wishes an explicitly
computable formula. In the account given by Stone �15� �see,
in particular, Sec. 4.3.2�, one approximation plays a domi-
nant role: this is the Unsöld approximation �16�, also called
the average-energy approximation, as employed by London
�17�. In the approach of Buckingham �18�, this approxima-
tion amounts to assuming that all states in the molecules that
contribute to their dispersion interaction have excitation en-
ergies close to one and the same average, which we corre-
spondingly denote by U1 and U2 for each molecule.

Letting A1 and A2 be the symmetric tensors representing
the polarizabilities of the interacting molecules, we give the
approximate dispersion energy the compact form

Udisp = −
C

r6 �U� � U���A1� · A2, �1�

where

C =
9U1U2

4�U1 + U2��4��0�2 ,

with �0 the dielectric constant in vacuum. In Eq. �1�, r is the
distance between the charge centers p1 and p2 of the two
molecles, rª �p2− p1�, and the uniaxial, second-rank tensor
U� is built from the unit vector e�

ª

1
r �p2− p1� directed from

p1 to p2 according to

U�
ª e�

� e� −
1

3
I .

We use a dot · to denote the inner product between two
second-rank tensors, A ·Bª tr�ABT�, where T denotes trans-
position. Moreover, the fourth-rank tensor A�B is defined
by its action on an arbitrary second-rank tensor C: it delivers
the second-rank tensor defined by �19,20�

�A � B��C� ª ACBT for all C . �2�

Equation �1� is valid under the assumption that certain oscil-
lators in one molecule, all with frequencies very close to one
another, are coupled with similar oscillators in the other mol-
ecule. When the oscillators that contribute to the interaction
have quite different frequencies, the total dispersion energy
Udisp acquires several terms, all in the form �1�:

Udisp = −
1

r6�
h,k

Chk�U� � U���A1h� · A2k, �3�

where A1h and A2k are the polarizability tensors correspond-
ing, in each molecule, to the coupled oscillators and

Chk =
9U1hU2k

4�U1h + U2k��4��0�2 ,

where U1h and U2h are the energies of the coupled states.
In the following, we shall build upon Eq. �1� our explicit

representation of the steric effects in dispersion forces inter-
actions, assuming, for simplicity, that in each molecule es-
sentially a single oscillator is involved in the interaction. The
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general case would then follow by superimposing all indi-
vidual dispersion interactions including their steric correc-
tions.

III. EXCLUDED REGION

Udisp is a potential of soft forces. For neutral, nonpolar
molecules, it is the first term in a multipolar expansion, valid
only if p1 and p2 are sufficiently far apart. These long-range
forces are complemented by short-range, hard forces, which
represent the steric hindrance to molecular interactions.
While dispersion forces are attractive, as are most long-range
forces, hard, steric forces are repulsive. We imagine a simple
picture to describe these latter: we think of each charge cen-
ter pi �i=1,2� as surrounded by a three-dimensional region
�i that represents the range of the repulsive, hard forces.
These essentially make �1 and �2 impenetrable to one an-
other, while they are dormant whenever �1 and �2 are not in
contact. Each �i, which we call the van der Waals region for
the corresponding molecule, reflects the molecular shape,
though it need not coincide with it.

Molecular interactions are ultimately responsible for the
mesogenic behavior of some molecules which, unlike others,
tend to form ordered phases. Often, a theoretical understand-
ing of these ordering transitions has been achieved within the
mean-field approximation. Perhaps the most successful ap-
plication of such an approximation in this area is the Maier-
Saupe theory for uniaxial nematic liquid crystals �5�. Replac-
ing the space-dependent dispersion energy �1� with a space-
independent one �6� is crucial to the success of this theory.
This is achieved by assuming that molecules sharing one and
the same relative orientation are isotropically distributed in
space around any given probe molecule and by computing an
effective interaction energy between the probe and all other
molecules.

The interaction energy �1� depends via e� on the relative
position of the two molecules and via A1 and A2 on their
relative orientation. The relative hindrance of the van der
Waals regions introduces in the effective intermolecular
forces a dependence upon the relative molecular orientation
subtler than the one explicitly appearing in �1�. We now
make this idea more precise. As shown in Fig. 1, for given
�1 and �2, there is a region �� in space, depending on �1
and �2, inaccessible to the charge center p2, if �1 and �2 are
mutually impenetrable.

We call �� the excluded region. As suggested by Fig. 1,
the boundary ��� of the excluded region is the union of all
possible trajectories described by p2 while ��2 glides with-
out rolling over ��1. Similarly, the region inaccessible to p1
by the impenetrability of �2 is enveloped by all possible
trajectories described by p1 while ��1 glides without rolling
over ��2. Since in both cases the relative motion between �1
and �2, regarded as rigid bodies, is purely translational, the
excluded regions obtained in these two ways simply differ by
a translation.

The effective pair potential Ueff is defined as the collec-
tive energy that a probe molecule exchanges with all other
molecules that have the same orientation relative to it. The
probe and all these molecules share the same excluded re-

gion, at whatever distance they are. Under the assumption
that the distribution of these molecules is isotropic in space
around the probe molecule, it follows from �1� that Ueff is
given by

Ueff = − C��
E\��

1

r6U� � U�dV	�A1� · A2, �4�

where the integral extends over the three-dimensional space
E outside the excluded region ��. Though �� can be defined
for two arbitrary regions �1 and �2, as in Fig. 1, from now
on, we will assume that the two interacting molecules are
identical so that �1 and �2 differ only by a rigid rotation R,
as do correspondingly A1 and A2. We simplify the notation
by letting �1=�, �2=��, A1=A, and A2=A�=RART.
Thus, Ueff ultimately depends on R: explicitly through A�,
and implicitly through ��. Unveiling this latter dependence
will make the steric effect on dispersion forces manifest.

When �� is a ball of radius R, the integral in Eq. �4� can
be evaluated directly and one finds

Ueff = − C��
R

� 1

r4�
S2

U� � U�da	�A� · A�

= −
4�C

3R3 
U� � U��S2�A� · A�,

where a is the area measure over the unit sphere S2 and

¯�S2 denotes the average over it. By symmetry, 
U��U��S2

is a linear combination of isotropic fourth-rank tensors; see
�A4� in Appendix A. An explicit computation shows that


U� � U��S2�A� · A� =
1

45
�A · A� + 3 trA trA�� , �5�

and so, up to a constant that is independent of the relative
orientation of the molecules,

Ω2

Ω1
∂Ω∗

ν∗

ν1
ν2

p1 �

�

p2

e∗

FIG. 1. The van der Waals regions �1 and �2 surrounding the
charge centers p1 and p2 of the interacting molecules. The unit
vector e� is directed from p1 to p2; �1 and �2 are the unit outer
normals to ��1 and ��2, respectively. The boundary ��� of the
excluded region �� is enveloped by p2 while ��2 glides without
rolling over ��1. The unit vector �� is the outer normal to ���. The
region enveloped by all possible trajectories described by p1 while
��1 glides without rolling over ��2 would only differ by a trans-
lation from ��.
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Ueff = −
4�C

135R3A · A�. �6�

This formula can be further simplified by introducing the
traceless parts A0 and A0� of A and A�, respectively, accord-
ing to

A = A0 +
1

3
�tr A�I, A� = A0� +

1

3
�tr A�I . �7�

By �7�,

A · A� = A0 · A0� +
1

3
�tr A�2,

and in �6� we can replace A and A� by A0 and A0�, only
altering Ueff by an inessential constant. If the polarizability A
is uniaxial about a molecular axis m3,

A = ��m3 � m3 + ���I − m3 � m3� ,

A0 = ��� − ����m3 � m3 −
1

3
I	 , �8�

where �� and �� denote the polarizabilities along the sym-
metry axis and perpendicular to it, then �6� yields the classi-
cal Maier-Saupe interaction, with Ueff=−U0P2�m3 ·m3��,
where U0 is a positive constant, m3�=Rm3, and P2�x�
ª

1
2 �3x2−1� is the second Legendre polynomial. As we shall

see below in Sec. VI, a deviation from the spherical shape of
the van der Waals region � will entail a steric correction to
the Maier-Saupe theory.

We now consider the more general case of a star-shaped
excluded region ��, which can be represented as

�� = p � E�p − p1 = re�, 0 � r � u��e��� , �9�

where the radial extension u� is a function of the unit vector
e�. In this case, the radial integration in �4� can still be done
explicitly and one finds

Ueff = −
4�C

3 � 1

u�3 U� � U��
S2

�A� · A� = −
4�C

3
I���A� · A�,

�10�

where we have introduced the fourth-rank tensor

I�� ª� 1

u�3 U� � U��
S2

. �11�

We call I�� the steric tensor because it depends only on the
shape of the excluded region and can in principle be com-
puted once u��e�� is known. The steric tensor also plays a
role in expressing the effective pair potential Ueff in �3�, valid
when multiple molecular oscillators participate in the inter-
action. It readily follows from the reasoning that led us to
�10� that

Ueff = −
4�

3 �
h,k=1

N

ChkI���Ah� · Ak�, �12�

where N is the number of oscillators in each molecule and Ah
and Ak� are the corresponding polarizability tensors.

Before we tackle in Sec. V the problem of computing I��

for a specific class of molecular shapes, we first address the
problem of how to determine u� for a given molecular shape.

IV. PERTURBATIVE METHOD

Obtaining the excluded region �� from the van der Waals
regions � and �� is not in general an easy task. A vast
literature has been devoted to computing the excluded vol-
ume V� of two hard molecules; as V� is precisely the volume
of ��, we refer the reader to that literature to appreciate the
many subtleties involved in the geometric problem of con-
structing ��. There are essentially two methods used to de-
termine �� and its volume V�; they are based on convex-
body coordinates and Minkowski sums: illustrations of these
methods and appropriate bibliographic sources can be found
in �21,22�.

Here we further build upon the kinematic construction of
�� and develop an analytic method, which we then apply in
a perturbative limit. We consider molecules whose shape can
be represented like �� in �9�,

� = p � E�p − p1 = re, 0 � r � u�e�� , �13�

where e is the radial unit vector and u is a scalar mapping on
S2. Like ��, the region � is star shaped relative to the charge
center p1. It follows from �13� that �� is the image of S2

under the mapping u�e�ªu�e�e. Figure 2 shows both � and
the unit sphere S2 around which �� is built.

As shown in Appendix B, the outer normal field � to ��
can be given the concise form

p1

p′1

Ω

Ω′

e∗

u∗

e

u

e ′

u ′
ν

ν ′
p

R

FIG. 2. The regions � and ��, the latter being � rotated
through R. � and �� are star shaped with respect to p1 and p1�,
respectively. The unit spheres of which their boundaries are images
are also depicted. � and �� are in contact at the point p
�������, where � and �� denote the corresponding outer unit
normals. The vectors u, u�, and u� are defined as uªp− p1, u�
ªp− p1�, and u�

ªp1�− p1.
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��e� =
ue − �su

�u2 + ��su�2
, �14�

where �su is the surface gradient of u on S2.
When � is subject to the rotation R, thus becoming ��,

each e on the sphere S2 around which ��� is built can be
seen as the image of RTe under R, so that �� is represented
as in �13� with u replaced by

u��e� ª u�RTe�, ∀ e � S2. �15�

Correspondingly, the outer unit normal �� to ��� is given by

���e� = R��RTe�, ∀ e � S2. �16�

Figure 2 illustrates the situation we envisage. The shapes �
and ��, with their charge centers p1 and p1�, are in mutual
contact at a point p on ������, designated, correspond-
ingly, by e and e� on the unit spheres around which �� and
��� are built. The vector u�

ªp1�− p1 describes the boundary
of ��� of the excluded region, built around the unit sphere
centered at p1; formally, we write

u��e�� = u��e��e� with e� � S2, �17�

where u� is the radial representation of ��� in �9�. By con-
struction,

u��e��e� = u�e�e − u��e��e�

and

��e� = − ���e�� .

By �15� and �16�, these equations may be given a more trans-
parent form

u�e� = u�e�e − u�RTe��e�, �18a�

��RTe�� = − RT��e� . �18b�

In general, the latter equation would determine e� in terms of
e; then, inserting e� into the former delivers both e� and u� as
functions of e. This task, however, may fail to be accom-
plished, as Eq. �18b� may fail to be satisfied for all e�S2.
Moreover, the local contact conditions �18a� and �18b�, even
if satisfied at a point, may conflict with the mutual impen-
etrability of � and �� at some other point. We need to seek
global solvability of Eqs. �18a� and �18b�; that is, we need to
identify, for any given rotation R, the mappings f� :e�e�
and f� :e�e� from a subset SR�S2 into and onto S2, respec-
tively, that turn Eqs. �18a� and �18b� into identities for an
appropriate positive u�. This would, in particular, ensure that
the excluded region �� is also star shaped, as desired. Cor-
respondingly, the steric tensor in Eq. �11� could then be con-
verted into an integral over SR through the change of vari-
ables induced on S2 by f�. Such an analytic program,
however, may easily become prohibitive for sufficiently gen-
eral shapes �. Noticeable examples are convex shapes, for
which Eq. �18b� is uniquely solvable, with SR=S2 for all
rotations R. Nevertheless, even for this special category of
shapes, the functions u� and f� may be very complicated, as
illuminated in Appendix C for ellipsoids.

For this reason, we resort to a perturbative approach and
apply the method now outlined to a special class of molecu-
lar shapes. Specifically, we set

u�e� = R�1 + �v�e�� , �19�

where R	0 is a given radius, �	0 is a small perturbation
parameter, and v is a bounded, smooth mapping defined on
S2. Without loss of generality, we may normalize v by requir-
ing that


v�S2 = 0, �20�

so that R can be interpreted as the average molecular radius.
Equation �19� represents a convex, spheroidal molecule. It
readily follows from �19� and �14� that for such a molecule
the outer unit normal takes the form

��e� = e − ��sv�e� + o��� . �21�

This mapping is clearly one to one on S2 whenever the sec-
ond surface gradient �s

2v on S2 is bounded. Under this as-
sumption, which we make from here on, the shape � is
convex and so will also be ��. By use of �21� in �18b�, we
arrive at an implicit function for e�,

e� = − e + ���sv�e� + R�sv�RTe��� + o��� ,

from which, since e�=−e+O���, it follows that

e� = − e + ���sv�e� + R�sv�− RTe�� + o��� . �22�

By �22�, �18a� becomes

u��e��e� = R2 + ��v�e� + v�RTe���e

− �R�R�sv�− RTe� + �sv�e�� + o��� . �23�

As �� is described by u� in �15�, ��, which is to be a spher-
oid like �, is described by

u��e�� = R��1 + �v��e��� + o��� , �24�

where both R� and v� are unknown. Inserting �24� into �23�
and observing that both �sv�e� and R�sv�−RTe� are or-
thogonal to e, we obtain

R� = 2R, v��e� =
1

2
�v�e� + v�− RTe�� �25a�

and

e� = e −
1

2
���sv�e� + R�sv�− RTe�� + o��� . �25b�

Equations �22� and �25b� are the perturbative representations
of the functions f� and f�. Thus, for any given R and v rep-
resenting � through �19�, Eqs. �25a� and �25b� determine
explicitly the corresponding representation of �� through
�24�. In the following section, this representation will lead us
to an explicit formula for the steric tensor I��.

V. STERIC EFFECT

One assumption in the original derivation of the Maier-
Saupe interaction is that for the averaging process the distri-
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bution of the molecules is spherically symmetric. This is a
particularly questionable assumption, because the interaction
energy decays with the sixth power of the intermolecular
distance, and so the most important contributions stem from
the nearest molecules. Maier and Saupe suggest �23� that the
steric effect can be taken into account by considering small
groups of molecules that would then be roughly spherically
symmetric. This leads merely to a renormalization of the
constants. Here, without abandoning the assumption on
spherical spatial symmetry for the distribution of molecular
charge centers, we explore directly the effect of nonspherical
molecular shapes on the dispersion interactions.

As we have seen in Sec. IV, for spheroidal molecules the
excluded region is given by the explicit representation �24�
with R� and v� as in �25a�. Then, for small �,

1

u�3 = � 1

R�	3

�1 − 3�v�� + o��� ,

and by �11�,

I�� = � 1

R�	3

�
U� � U��e��S2 − 3�
v��e�U � U�e�S2� + o��� ,

�26�

where

U = e � e −
1

3
I .

For definiteness, we made explicit the variables in both av-
erages appearing in Eq. �26�; in the second, we also take
advantage of the fact that, at the lowest order in �, f� is the
identity on S2 �see Eq. �25b��. The first term on the right-
hand side of Eq. �26� is the same that was found in Sec. III
for a spherical excluded region, and the second term gives
the steric correction to the dispersion interaction. To make
this more explicit, we consider the multipole expansion of v
in terms of Cartesian tensors:

v�e� = E · e + E · e � e
�

+ E�3� · e � e � e
�

+ E�4� · e � e � e � e
�

+ ¯ ,

�27�

where ¯

�
denotes the �symmetric� irreducible part of a ten-

sor, E is the shape dipole, E is the shape quadrupole, and the
E�i�’s are the higher moments. The gauge �20� forbids any
constant term in �27�. Because U�U is even in e, the odd-
rank tensors in the expansion �27� do not contribute to the
steric tensor �26�. The first relevant term is the shape quad-
rupole, a symmetric traceless second-rank tensor which can
be computed for a given v�e� as

E =
15

2

ve � e
�

�S2 =
15

2
�v�e � e −

1

3
I	�

S2
. �28�

From now on, we neglect higher orders and consider

v = E · e � e
�

= e · Ee , �29�

bearing in mind that tr E=0. By �25a�, Eq. �29� leads to

v��e� =
1

2
e · �E + E��e , �30�

where E�=RERT. The steric tensor �26� can then be found
explictly by noting that �see �A5��


�U � U�ijklemen�S2SmnAklAij�

=
2

315
S · �3 tr A�A + A��

− 2AA�� �31�

for symmetric tensors A, A�, and S, with tr S=0 and tr A
=tr A�. With this, by �10� and �11�, the effective dispersion
pair potential becomes

Ueff = −
4�C

945R�3 7�A · A� + 3�tr A�2�

− 3��E + E�� · �3 tr A�A + A�� − 2AA��� + o��� .

�32�

For the further discussion it is convenient to introduce in
�32� the tensors A0 and A0� defined in �7�; one then obtains

Ueff = −
4�C

2835R�3 7�3A0 · A0� + 10�tr A�2�

− 3��E + E�� · �7 tr A�A0 + A0�� − 6A0A0��� , �33�

valid up to first order in �.

VI. SPECIAL INTERACTIONS

We now consider the special case where the shape quad-
rupole and polarizability tensor share the same eigenframe,
given by three orthonormal molecular vectors m1 ,m2 ,m3�.
Then both tensors can be represented as linear combinations
of the identity I and the two orthogonal tensors

q ª m3 � m3 −
1

3
I, b ª m1 � m1 − m2 � m2.

We write the quadrupolar shape tensor as

�E = 
q + �b , �34�

where 
 and � are small parameters, and then

�E� = 
q� + �b� �35�

with q�=RqRT and b�=RbRT.

A. Maier-Saupe interaction

For the Maier-Saupe interaction the polarizability tensor
A is uniaxial as in �8�. Equivalently, A and A� can also be
written as

ANDRÉ M. SONNET AND EPIFANIO G. VIRGA PHYSICAL REVIEW E 77, 031704 �2008�

031704-6



A = �I + ��q, A� = �I + ��q�, �36�

where �= 1
3 trA= 1

3 ��� +2��� and ��=�� −��. With the aid
of the identities �A6�, Ueff in �33� is found to be, up to a
constant,

Ueff = −
4�C����2

135R�3 ��1 + 2
�2

7
−

3�

��
	�q · q�

− ��2

7
+

3�

��
	�q · b� + b · q��� . �37�

This formula embodies the steric correction to the classical
Maier-Saupe interaction energy. It suggests a few comments.

First, since both �� and �� are positive and

2

7
−

3�

��
= −

5�� + 16��

7��
,

the sign of the correction to the coefficient of q ·q� is oppo-
site to the sign of 
 ��, meaning that the molecular long axis
interaction is depressed if the molecular shape quadrupole is
resonant, as it were, with the anisotropic polarizability ten-
sor, and it is enhanced otherwise. Thus, for �=0, a uniaxial
shape quadrupole prolate along the symmetry axis m3 would
depress the bare Maier-Saupe interaction when ��	0,
whereas it would enhance it when ���0.

Second, for ��0—that is, for a biaxial shape
quadrupole—the dispersion interaction between molecules
with uniaxial polarizability tensors becomes effectively biax-
ial. As shown by Luckhurst and Romano �24� by simulation
and lately confirmed within a general mean-field theory �27�,
a biaxial interaction potential like �37� with ��0 does not
promote condensed biaxial phases. However, at variance
with the classical Maier-Saupe potential, the transition tem-
perature for such a potential would depend on the coefficient
of the biaxial correction, which here is a function of the
molecular shape.

B. Straley interaction

We now consider the more general case of an arbitrary,
possibly biaxial polarizability with eigenvalues �11, �22, and
�33. This can be written as

A = �I + ��q +
1

2
���b , �38�

with the average polarizability �= 1
3 trA= 1

3 ��11+�22+�33�
and the polarizability anisotropies ��=�33− 1

2 ��11+�22� and
���=�11−�22. �When �11=�22, this reduces to the Maier-
Saupe interaction discussed in the preceding subsection.� The
effective pair potential then takes the form

Ueff = −
�C

945R�3 aq · q� + b�q · b� + b · q�� + cb · b�� ,

�39�

with

a ª ���28�� + 8
�2�� − 21�� − 24� ���� , �40a�

b ª 14�� ��� − 2��4��2 + 3���
2 � − 42��2� ��

+ 
 ���� , �40b�

c ª ����7��� − 4��2�� + 21�� − 4
���� . �40c�

Since by �34� 
 and � are small perturbation parameters, it is
easily seen that a	0. Thus, by setting

U0 ª
�Ca

945R�3 ,  ª

b

a
, � ª

c

a
, �41�

Eq. �39� can be given the following form put forward by
Straley �25,26� for general biaxial molecules:

Ueff = − U0q · q� + �q · b� + b · q�� + �b · b�� . �42�

Before Straley, Freiser �28,29� proposed a model for thermo-
tropic liquid crystals composed of biaxial molecules, which
appeared as a natural extension of the Maier-Saupe theory:
Freiser posited the effective pair potential

Ueff = − U0
�A · A�, �43�

where U0
� is a characteristic coupling energy. As shown by

�6�, for spherical molecules, this formula would result from a
dispersion interaction involving a single oscillator in each
molecule. Clearly, by �38�, �43� is a special case of �42�, this
latter reducing to the former when �=2. Similarly, again for
spherical molecules, �42� can be interpreted in the language
of dispersion forces if we imagine three independent oscilla-
tors at right angles in each molecule �30�. It is remarkable
that for nonspherical molecules a steric quadrupolar correc-
tion to a bare Freiser interaction changes it into a Straley
interaction, which dispersion forces could only justify
through multiple oscillators.

The connection between the Straley and Freiser interac-
tions is deeper than this illustrates. As shown in �27�, the
effective pair potential in Eq. �42� can be given the diagonal
form

Ueff = − U0��1q1 · q1� + �2q2 · q2�� , �44�

with

q1,2 = q + 1,2b .

Equation �44� shows the Straley interaction as composed by
the superposition of two Freiser interactions; there, the ten-
sors q1,2 have different expressions for different values of 
and �. Precisely, for �0,

1,2 =
3� − 1 � ��3� − 1�2 + 122

6

and

�1 =
2 − 

2 − 1
, �2 =

 − 1

2 − 1
,

while for =0 one simply has q1=q, q2=b, �1=1, and �2
=�.

For �	2, both �1 and �2 are positive, and so both in-
teractions in the diagonal decomposition �44� are attractive.
The potential Ueff is called fully attractive. For �=2, either
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�1 or �2 vanishes: Equation �44� still reduces to a single
attractive term. The potential Ueff is called simply attractive.
For ��2, either �1 or �2 is negative, and Eq. �44� is a
superposition of attractive and repulsive interactions. The po-
tential Ueff is called partly repulsive. The discriminating pa-
rabola �=2 in the � ,�� plane has also been referred to as
the dispersion parabola �27,31�.

For the particular realization �39� of the Straley interac-
tion, one readily sees from �40a�–�40c� and �41� that Ueff is
fully attractive, simply attractive, or partly repulsive depend-
ing on whether the discriminant �ªb2−ac is negative, zero,
or positive. When 
=�=0—that is, when the steric effect is
neglected—Ueff in �39� is simply attractive. In general, it is
found that � is a perfect square,

� = 4�
����4�� − 21�� + ��42��� + 4��2 − 3���
2 ��2

� 0. �45�

This shows that Ueff in �39� can never be represented by a
point that lies in the � ,�� plane above the dispersion pa-
rabola, and so accounting for the steric effect cannot change
a bare Freiser interaction into a fully attractive Straley inter-
action. This outcome supports the intuitive view presented in
�27� that partly repulsive interactions reflect somehow steric
hindrance. However, � can vanish, thus rendering Ueff sim-
ply attractive, even in the presence of a steric effect. For
example, for ��0, �=0 whenever




�
=

3�2 − 42� − 4�2

��4� − 21�
,

where

� ª
��

�
and � ª

���

�

are subject to the bounds − 3
2 ���3 and −3���3. On the

other hand, if �=0, so that the shape quadrupole is uniaxial,
� vanishes only if ���=0—that is, only if the polarizability
tensor is also uniaxial. Thus, for spheroidal biaxial mol-
ecules, the steric hindrance may either map a bare Freiser
interaction into another, represented by a new, effective po-
larizability tensor and possibly a different coupling energy,
or transform it into a partly repulsive Straley interaction.

VII. CONCLUSION

We computed the formal contribution of molecular hin-
drance to the dispersion forces interactions of two rigid mol-
ecules. This steric effect is embodied by the steric tensor I��

defined by �11� for a star-shaped excluded region ��, the
region that the repulsion between molecular cores makes in-
accessible to both. This is an attempt, different from the oth-
ers we are aware of, to give a rigorous account of the inter-
play between attractive, long-range forces and repulsive,
short-range forces in molecular interactions.

To explore analytically the steric effect in a specific class
of molecular shapes, we considered spheroidal molecules
and, for simplicity, we restrained up to the quadrupolar term
the multipolar expansion of their shape representation. We

showed how a biaxial quadrupolar shape can turn the classi-
cal Maier-Saupe interaction potential for uniaxial nematic
liquid crystals into a biaxial interaction potential in the fam-
ily envisaged by Straley on the basis of pure symmetry. The
specific steric correction to the Maier-Saupe interaction is
not capable of promoting biaxial phases, but it affects the
transition temperature. In a similar way, we explored the
consequences of the steric effect on a bare Freiser interac-
tion, a dispersion interaction between single oscillators in
molecules with biaxial polarizability tensors. The steric ef-
fect transforms this interaction into a partly repulsive Straley
interaction, this corroborating the view that the Straley inter-
actions represented by the potential �42� with ��2 some-
how embody molecular hindrance �27�.

It has been known since the seminal paper of Onsager �4�
that the ordering phase transitions of nematogenic molecules
can also be explained by a purely athermic theory based on
excluded volume interactions. For biaxial molecules in the
family of spherocuboids �22�, it was shown in �32� that the
quadrupolar component of the excluded volume interaction
is partly repulsive for all geometric parameters describing the
molecular shape. Such a conclusion reached for purely hard-
core repulsive interactions somehow parallels the one
reached here on the partly repulsive nature of the steric cor-
rection to a bare Freiser interaction. As hard-core repulsive
interactions result in a quadrupolar attraction, albeit partly
repulsive, so does the molecular hindrance in a single oscil-
lator dispersion interaction, at least for spheroidal molecular
shapes.

A few questions are raised by these conclusions: first,
whether the steric tensor I�� can be computed, possibly nu-
merically, for nonspheroidal molecules; second, which is the
nature of the steric correction to a general Straley interaction,
not necessarily in the spheroidal approximation; and third,
whether the pure dispersion model put forward by Bates and
Luckhurst for V-shaped molecules �33�, which in the way it
is formulated could apply as well to X-shaped molecules,
can be tailored to V-shaped molecules by accounting for their
specific shape in computing the steric correction. We hope
that these questions can be answered by future work.
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APPENDIX A: ALGEBRAIC IDENTITIES

The average of a tensor product of n unit vectors e � ¯

� e over S2 is a totally symmetric isotropic tensor of rank n.
In particular, for ranks 2, 4, and 6, one has


eiej�S2 =
1

3
�ij , �A1�


eiejekel�S2 =
1

15
��ij�kl + �ik� jl + �il� jk� , �A2�

and
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eiejekelemen�S2 =
1

105
��ij�kl�mn + ¯� , �A3�

where the ellipsis stands for the 14 further products of three
�’s with different combinations of the six indices. The nu-
merical factors of 1

�n+1�!! can be found, for example, by taking
traces or considering contractions of the tensors with n unit
vectors ez.

Using the above identities, one readily finds that for
�U�U�ijkl=eiejekel−

1
3 �eiek� jl+ejel�ik�+ 1

9�ik� jl


�U � U�ijkl�S2 =
1

15
��ij�kl + �il� jk� −

2

45
� jl�ik. �A4�

Similarly,


�U � U�ijklemen�S2

= 
eiejekelemen�S2 −
1

135
�ik� jl�mn

−
1

45
��im� jl�kn + �in� jl�km + �ik� jm�ln

+ �ik� jn�lm� . �A5�

The tensors qªm3 � m3− 1
3I and bªm1 � m1−m2 � m2

form together with the identity I a basis for all diagonal
tensors in the frame m1 ,m2 ,m3�. The following identities
hold for products of q and b:

q2 =
1

3
q +

2

9
I ,

b2 = − q +
2

3
I ,

qb = bq = −
1

3
b . �A6�

APPENDIX B: NORMAL TO A STAR-SHAPED
REGION

In this appendix we represent the outer unit normal field
to the boundary of a star-shaped region �.

Let u be a smooth mapping from S2 into the surface ��
ªu�S2�. Imagine a curve on S2 parametrized as t�e�t��S2.
Here differentiation with respect to t will be denoted by a
superimposed dot. The vector ė is everywhere tangent to S2,
and t can be rescaled so that ė has unit length at any selected
value t= t̄. We can always choose two such curves e1�t� and
e2�t� so that ė1 · ė2=0 and ė1� ė2=e for t= t̄. Correspond-
ingly, the curves ui�t�ªu(ei�t�), for i=1,2, describe trajec-
tories on ��. The normal � can then be written as

� =
u̇1 � u̇2

�u̇1 � u̇2�
. �B1�

For u�e�=u�e�e, with u as in �19�,

u̇i = u�e�ėi + ��su�e� · ėi�e, for i = 1,2, �B2�

where �su is the surface gradient of u on S2. It follows from
�B2� that

u̇1 � u̇2 = u�ue − ��su · ė1�ė1 − ��su · ė2�ė2� = u�ue − �su� ,

since �ė1 , ė2� is a local basis on S2, and e and �su are or-
thogonal. Equations �B1� and �B2� readily imply Eq. �14� in
the text.

APPENDIX C: ELLIPSOIDS

Here we solve Eqs. �18a� and �18b� for an ellipsoid. In the
representation �13�, an ellipsoid � is described by a mapping
u�e� such that

u · Eu = 1 and u = u�e�e , �C1�

where E is a positive definite symmetric tensor. It readily
follows from �C1� that

u�e� =
1

�e · Ee
. �C2�

Since �se=I−e � e, we obtain from �C2� that

�su = ue − u3Ee ,

and so, by �14�, we arrive at

��e� =
Ee

�Ee�
. �C3�

By �C3�, Eq. �18b� becomes

E�e�

�E�e��
= −

Ee

�Ee�
, �C4�

where

E� ª RERT.

Since E� is invertible, the solution to Eq. �C4� is

e� = −
E�−1Ee

�E�−1Ee�
,

and then �18a� becomes

u�e� =
e

�e · Ee
+

E�−1Ee
�E�−1Ee · Ee

,

from which we obtain both u� and f�, though expressed by
rather complicated formulas.
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